Skip to main content
  • CIS
    Members: Free
    IEEE Members: Free
    Non-members: Free
    Length: 01:32:04
19 Jul 2020

Evolution of artificial neural networks has recently emerged as a powerful technique in two areas. First, while the standard value-function based reinforcement learning works well when the environment is fully observable, neuroevolution makes it possible to disambiguate hidden state through memory. Such memory makes new applications possible in areas such as robotic control, game playing,
and artificial life. Second, deep learning performance depends crucially on the network architecture and hyperparameters. While many such architectures are too complex to be optimized by hand, neuroevolution can be used to do so automatically. Such evolutionary AutoML can be used to achieve good deep learning performance even with limited resources, or state=of-the art performance with more effort. It is also possible to optimize other aspects of the architecture, like its size, speed, or fit with hardware. In this tutorial, I will review (1) neuroevolution methods that evolve fixed-topology networks, network topologies, and network construction processes, (2) methods for neural architecture search and evolutionary AutoML, and (3) applications of these techniques in control, robotics,
artificial life, games, image processing, and language