Tutorial: Pareto Optimization for Subset Selection: Theories and Practical Algorithms
Chao Qian and Yang Yu
-
CIS
IEEE Members: Free
Non-members: FreeLength: 01:17:37
Pareto optimization is a general optimization framework for solving single-objective optimization problems, based on multi-objective evolutionary optimization. The main idea is to transform a single-objective optimization problem into a bi-objective one, then employ a multi-objective evolutionary algorithm to solve it, and finally return the best feasible solution w.r.t. the original single-objective optimization problem from the produced non-dominated solution set. Pareto optimization has been shown a promising method for the subset selection problem, which has applications in diverse areas, including machine learning, data mining, natural language processing, computer vision, information retrieval, etc. The theoretical understanding of Pareto optimization has recently been significantly developed, showing its irreplaceability for subset selection. This tutorial will introduce Pareto optimization from scratch. We will show that it achieves the best-so-far theoretical and practical performances in several applications of subset selection. We will also introduce advanced variants of Pareto optimization for large-scale, noisy and dynamic subset selection. We assume that the audiences are with basic knowledge of probability theory.